Lebesgue (1875 - 1941)
Bir Fransız matematikçisi olan Henri Leon Lebesgue, Fransa'da Beauvais kentinde 28 Haziran 1875 günü doğdu. Çok iyi bir öğrenim gördü ve 1897 yılında Paris Üniversitesinden Ph.D. diplomasını aldı. Bu doktorası üzerinde bir söylenti de vardır. Dirichlet fonksiyonunun Riemann anlamında intergalinin olmadığı o çağlarda biliniyordu. Hatırlanırsa, rasyonel noktalarda bir ve irrasyonel noktalarda sıfır değerini alan fonksiyon, matematikte Dirichlet fonksiyonu adıyla bilinir. Lebesgue, bu Dirichlet fonksiyonunu integralleyebilecek bir integral tanımı getirebilir miyim diye düşündü. Riemann integralinin tersine, bölüntüyü x ekseni üzerinde değil de y ekseni üzerinde aldı. Bunda başarılı oldu. Bu getirdiği integral yöntemine de Lebesgue integrali adını verdi. Böylece, analize yeni ufuklar açtı.
1906 ile 1910 yılları arasında Potiers Fen Fakültesinde öğretim yaşamını sürdürdü. 1910 ile 1919 yılları arasında öğretim görevliliği yaptı. 1921 ile 1931 yılları arasında Paris Fen Fakültesinde çalıştı.
Lebesgue, Fransa'da matematik alanında büyük bir çağın en seçkin önderlerindendi. Analiz çalışmalarının hemen hemen tümü gerçel değişkenli fonksiyonlar kuramıyla ilgilidir. Özellikle, integral kavramının Lebesgue integrali denilen bir genişlemesini ona borçluyuz. Lebesgue'in integral tanımına göre, bazı fonksiyonların Riemann anlamında integrali olmadığı halde, Lebesgue integrali vardır. Buna en güzel örnekte, ünlü Dirichlet fonksiyonudur. İntegralin bu genelleştirilmiş kavramı matematikte en çok uygulama alanı bulan bir yenilik olmuştur. Çağımızda da halen bu kuram tüm canlılığıyla yürütülmektedir. Bu kuram artık analizin temel dersidir. Analizci herkes önce bu konuları öğrenir. İleri araştırmalar için gereklidir.
Şüphesiz, Lebesgue integralinin anlaşılması hemen kolay bir kuram da değildir. Bunun için önce Lebesgue ölçümü kuramını geliştirmek gerekir. Bu nedenle, Lebesgue önce Lebesgue ölçümünü geliştirdi. Burada, kümelerin ölçülebilmeleri ve fonksiyonların ölçülebilmeleri kavramlarını getirdi. Bundan sonra, kendi adıyla anılan ünlü Lebesgue integralini oluşturdu. Bu konuda hazırladığı teze, jüri üyelerinin önce itiraz ettiği, sonra doktora yöneticisinin ricasıyla, "Bu öğrenci çok zeki ve bana düşündürücü sorular sorar", diyerek onları razı ettiği söylenir. Bu söylenti doğru da olsa yanlışta olsa; Lebesgue tarafından bu çalışma yayınlandığında, bu buluş, tüm dünyada bir bomba gibi patlamış ve tüm matematikçileri bu sahada çalışmaya ve yeni yeni buluşları gerçekleştirmeye yöneltmiştir. Bu kuramın çok geniş bir biçimde meyveleri alınmıştır. Oldukça uygulama alanları bulmuş ve sürekli genelleştirmeleri yapılmıştır. Artık bu kuram analizin kaçınılmaz bir aleti durumuna getirilmiştir. Bunun ötesinde, matematiğin diğer dallarına da yeni ufuklar açarak, onların gelişmesini sağlamıştır.
Lebesgue, ünlü olduktan sonra, birçok üniversitede dersler vermiştir. 1921 yılında College de France'ta profesör olmuştur. Lebesgue'in çok parlak ve yaratıcı bir matematik kafası vardır. Ülkesi içinde ve tüm dünyada oldukça şereflendirilmiş, ödüllendirilmiş ve çok mesut bir evlilik yapmış biriydi. Bugün, integral kuramının kurucusu olarak tüm dünya onu kabul eder. Bu kuramda ve analizde çok sayıda buluşları vardır. Çalışmalarının tüm ürünlerini almış ve kuramının tutulup ne kadar ileri götürüldüğünü gören mutlu matematikçilerden biridir. 26 Temmuz 1941 günü altmış altı yaşındayken Paris'te öldü.
"Olasılıklar Hesabı" adlı kitabının üçüncü basımı 1820 yılında çıktı. Astronom ve matematikçi olduğu kadar çok üstün bir yazma tekniğine de sahipti. Bu yüzden, kolayca görülür deyimi dışında onun eserleri de eksiksizdi.
On sekizinci yüzyılda, iki Fransız Lagrange ve Laplace birçok yönüyle zıttılar. Laplace, fizik, matematik grubuna; Lagrange ise kuramsal matematik grubuna giriyordu. Lagrange, bütün bunların matematikten başka bir şey olmadığını söylüyordu. Laplace ise, matematiği kullanılan bir alet gibi görüyordu. Aslında Laplace her ikisini de yapıyordu. Örneğin, potansiyel kuramın önemi matematik yönüyledir. Sınır değer problemleri yine aynı değerdedir. Bunun gibi olan çalışma örnekleri arttırılabilir.
Laplace, 1785 yılında Akademinin sürekli üyesi seçildi. Sağlam ve karakterli bir yapısı vardı. Askeri okula giriş sınavında Napolyon Bonapart'ı (1768 -1821) imtihan etmişti. Daha sonra Napolyon onu siyasetin çamuruna ve bataklıklı sularına sürükleyecekti. Gerek Laplace ve gerekse Lagrange ihtilalin dışında kalmadılar. Newton son yıllarını siyasette geçirdiği gibi, Laplace da onu yenmek amacıyla siyasete atıldı. Napolyon ona içişleri bakanlığını verdi. Laplace, oldukça oynak fikirli davranışlarda bulunuyordu. Napolyon devrinin bütün nişanları göğsünü süslüyordu. Kötü bir yöneticiydi. Zaten içişleri bakanlığı görevini ancak altı hafta sürdürebilmiştir. Napolyon'la beraber onun da siyasi hayatı sona ermiştir.
Laplace'ın en iyi tarafı, matematik çalışan gençleri tutar ve onlara yardım ederdi. Laplace'ın bulunduğu bir toplantıda, Biot adlı bir genç matematikçi Akademide bir çalışmasını okur. Toplantı bittikten sonra Biot'u bir kenara çeken Laplace, cebinden çıkardığı ve sararmış kağıtları göstererek, aynı keşfi kendisinin yıllar önce elindeki. kağıtların eskiliğinden de anlaşılacağı üzere, bulduğunu ve yayınlamadığını gizlice söyler. Laplace, Biot'a bunu kimseye söylemeyeceğini ve çalışmasını çekinmeden yayınlamasını içtenlikle istemiştir. Bu onun, binlerce olumlu davranışlarından biridir. Laplace, matematik araştırmaları yapan gençleri manevi evladı gibi görür ve onlara kendi öz çocukları gibi yakınlık gösterirdi.
Laplace'la Lagrange, gerek zamanlarında gerekse onlardan sonra gelenler tarafından olsun çok karşılaştırılmışlardır. Bazıları Lagrange'ı tutmuş ve onu göklere yükseltmiştir. Bazıları da Laplace'ı tutup övmüştür. Aslında böyle bir karşılaştırmaya ve ayırt etmeye hiç gerek yoktur. İkisi de matematikte ölümsüz buluşlar yapmışlardır.
Laplace, son günlerini Paris yöresinde Arcueil'de geçirmiş, kısa bir rahatsızlıktan sonra 5 Mart 1827 yılında yetmiş sekiz yaşında ölmüştür. Sayısız eser bırakmıştır.
Bir Fransız matematikçisi olan Henri Leon Lebesgue, Fransa'da Beauvais kentinde 28 Haziran 1875 günü doğdu. Çok iyi bir öğrenim gördü ve 1897 yılında Paris Üniversitesinden Ph.D. diplomasını aldı. Bu doktorası üzerinde bir söylenti de vardır. Dirichlet fonksiyonunun Riemann anlamında intergalinin olmadığı o çağlarda biliniyordu. Hatırlanırsa, rasyonel noktalarda bir ve irrasyonel noktalarda sıfır değerini alan fonksiyon, matematikte Dirichlet fonksiyonu adıyla bilinir. Lebesgue, bu Dirichlet fonksiyonunu integralleyebilecek bir integral tanımı getirebilir miyim diye düşündü. Riemann integralinin tersine, bölüntüyü x ekseni üzerinde değil de y ekseni üzerinde aldı. Bunda başarılı oldu. Bu getirdiği integral yöntemine de Lebesgue integrali adını verdi. Böylece, analize yeni ufuklar açtı.
1906 ile 1910 yılları arasında Potiers Fen Fakültesinde öğretim yaşamını sürdürdü. 1910 ile 1919 yılları arasında öğretim görevliliği yaptı. 1921 ile 1931 yılları arasında Paris Fen Fakültesinde çalıştı.
Lebesgue, Fransa'da matematik alanında büyük bir çağın en seçkin önderlerindendi. Analiz çalışmalarının hemen hemen tümü gerçel değişkenli fonksiyonlar kuramıyla ilgilidir. Özellikle, integral kavramının Lebesgue integrali denilen bir genişlemesini ona borçluyuz. Lebesgue'in integral tanımına göre, bazı fonksiyonların Riemann anlamında integrali olmadığı halde, Lebesgue integrali vardır. Buna en güzel örnekte, ünlü Dirichlet fonksiyonudur. İntegralin bu genelleştirilmiş kavramı matematikte en çok uygulama alanı bulan bir yenilik olmuştur. Çağımızda da halen bu kuram tüm canlılığıyla yürütülmektedir. Bu kuram artık analizin temel dersidir. Analizci herkes önce bu konuları öğrenir. İleri araştırmalar için gereklidir.
Şüphesiz, Lebesgue integralinin anlaşılması hemen kolay bir kuram da değildir. Bunun için önce Lebesgue ölçümü kuramını geliştirmek gerekir. Bu nedenle, Lebesgue önce Lebesgue ölçümünü geliştirdi. Burada, kümelerin ölçülebilmeleri ve fonksiyonların ölçülebilmeleri kavramlarını getirdi. Bundan sonra, kendi adıyla anılan ünlü Lebesgue integralini oluşturdu. Bu konuda hazırladığı teze, jüri üyelerinin önce itiraz ettiği, sonra doktora yöneticisinin ricasıyla, "Bu öğrenci çok zeki ve bana düşündürücü sorular sorar", diyerek onları razı ettiği söylenir. Bu söylenti doğru da olsa yanlışta olsa; Lebesgue tarafından bu çalışma yayınlandığında, bu buluş, tüm dünyada bir bomba gibi patlamış ve tüm matematikçileri bu sahada çalışmaya ve yeni yeni buluşları gerçekleştirmeye yöneltmiştir. Bu kuramın çok geniş bir biçimde meyveleri alınmıştır. Oldukça uygulama alanları bulmuş ve sürekli genelleştirmeleri yapılmıştır. Artık bu kuram analizin kaçınılmaz bir aleti durumuna getirilmiştir. Bunun ötesinde, matematiğin diğer dallarına da yeni ufuklar açarak, onların gelişmesini sağlamıştır.
Lebesgue, ünlü olduktan sonra, birçok üniversitede dersler vermiştir. 1921 yılında College de France'ta profesör olmuştur. Lebesgue'in çok parlak ve yaratıcı bir matematik kafası vardır. Ülkesi içinde ve tüm dünyada oldukça şereflendirilmiş, ödüllendirilmiş ve çok mesut bir evlilik yapmış biriydi. Bugün, integral kuramının kurucusu olarak tüm dünya onu kabul eder. Bu kuramda ve analizde çok sayıda buluşları vardır. Çalışmalarının tüm ürünlerini almış ve kuramının tutulup ne kadar ileri götürüldüğünü gören mutlu matematikçilerden biridir. 26 Temmuz 1941 günü altmış altı yaşındayken Paris'te öldü.
"Olasılıklar Hesabı" adlı kitabının üçüncü basımı 1820 yılında çıktı. Astronom ve matematikçi olduğu kadar çok üstün bir yazma tekniğine de sahipti. Bu yüzden, kolayca görülür deyimi dışında onun eserleri de eksiksizdi.
On sekizinci yüzyılda, iki Fransız Lagrange ve Laplace birçok yönüyle zıttılar. Laplace, fizik, matematik grubuna; Lagrange ise kuramsal matematik grubuna giriyordu. Lagrange, bütün bunların matematikten başka bir şey olmadığını söylüyordu. Laplace ise, matematiği kullanılan bir alet gibi görüyordu. Aslında Laplace her ikisini de yapıyordu. Örneğin, potansiyel kuramın önemi matematik yönüyledir. Sınır değer problemleri yine aynı değerdedir. Bunun gibi olan çalışma örnekleri arttırılabilir.
Laplace, 1785 yılında Akademinin sürekli üyesi seçildi. Sağlam ve karakterli bir yapısı vardı. Askeri okula giriş sınavında Napolyon Bonapart'ı (1768 -1821) imtihan etmişti. Daha sonra Napolyon onu siyasetin çamuruna ve bataklıklı sularına sürükleyecekti. Gerek Laplace ve gerekse Lagrange ihtilalin dışında kalmadılar. Newton son yıllarını siyasette geçirdiği gibi, Laplace da onu yenmek amacıyla siyasete atıldı. Napolyon ona içişleri bakanlığını verdi. Laplace, oldukça oynak fikirli davranışlarda bulunuyordu. Napolyon devrinin bütün nişanları göğsünü süslüyordu. Kötü bir yöneticiydi. Zaten içişleri bakanlığı görevini ancak altı hafta sürdürebilmiştir. Napolyon'la beraber onun da siyasi hayatı sona ermiştir.
Laplace'ın en iyi tarafı, matematik çalışan gençleri tutar ve onlara yardım ederdi. Laplace'ın bulunduğu bir toplantıda, Biot adlı bir genç matematikçi Akademide bir çalışmasını okur. Toplantı bittikten sonra Biot'u bir kenara çeken Laplace, cebinden çıkardığı ve sararmış kağıtları göstererek, aynı keşfi kendisinin yıllar önce elindeki. kağıtların eskiliğinden de anlaşılacağı üzere, bulduğunu ve yayınlamadığını gizlice söyler. Laplace, Biot'a bunu kimseye söylemeyeceğini ve çalışmasını çekinmeden yayınlamasını içtenlikle istemiştir. Bu onun, binlerce olumlu davranışlarından biridir. Laplace, matematik araştırmaları yapan gençleri manevi evladı gibi görür ve onlara kendi öz çocukları gibi yakınlık gösterirdi.
Laplace'la Lagrange, gerek zamanlarında gerekse onlardan sonra gelenler tarafından olsun çok karşılaştırılmışlardır. Bazıları Lagrange'ı tutmuş ve onu göklere yükseltmiştir. Bazıları da Laplace'ı tutup övmüştür. Aslında böyle bir karşılaştırmaya ve ayırt etmeye hiç gerek yoktur. İkisi de matematikte ölümsüz buluşlar yapmışlardır.
Laplace, son günlerini Paris yöresinde Arcueil'de geçirmiş, kısa bir rahatsızlıktan sonra 5 Mart 1827 yılında yetmiş sekiz yaşında ölmüştür. Sayısız eser bırakmıştır.